久久久久久久999_99精品久久精品一区二区爱城_成人欧美一区二区三区在线播放_国产精品日本一区二区不卡视频_国产午夜视频_欧美精品在线观看免费

標題: 單片機超聲波測距(論文)外文翻譯資料下載 [打印本頁]

作者: autumn拽    時間: 2018-6-3 22:54
標題: 單片機超聲波測距(論文)外文翻譯資料下載
師范大學本科畢業(yè)設計(論文)外文翻譯
譯文:
超聲波測距儀
【摘要】提出了一種可以抵消溫度影響和濕度變化的新型超聲波測距儀,包括測量單元和參考資料。在每一個單位,重復的一系列脈沖產生,每有一個重復率,直接關系到各自之間的距離,發(fā)射機和接收機。該脈沖序列提供給各自的計數(shù)器,計數(shù)器的產出的比率,是用來確定被測量的距離。

一、背景發(fā)明
本發(fā)明涉及到儀器的測量距離,最主要的是,這種儀器,其中兩點之間傳輸超聲波。精密機床必須校準。在過去,這已經利用機械設備來完成,如卡鉗,微米尺等。不過,使用這種裝置并不利于本身的自動化技術發(fā)展。據(jù)了解,兩點之間的距離可以通過測量兩點之間的行波傳播時間的決定。這樣的一個波浪型是一種超聲波,或聲波。當超聲波在兩點之間通過時,兩點之間的距離可以由波的速度乘以測量得到的在分離的兩點中波中轉的時間。因此,本發(fā)明提供儀器利用超聲波來精確測量兩點之間的距離對象。
當任意兩點之間的介質是空氣時,聲音的速度取決于溫度和空氣的相對濕度。因此,它是進一步的研究對象,本次的發(fā)明,提供的是獨立于溫度和濕度的變化的新型儀器。
二、綜述發(fā)明
這項距離測量儀器發(fā)明是根據(jù)上述的一些條件和額外的一些基礎原則完成的,其中包括一個參考單位和測量單位。參考和測量單位是相同的,每個包括一個超聲波發(fā)射機和一個接收機。間隔發(fā)射器和接收器的參考值是一個固定的參考距離,而間距之間的發(fā)射機和接收機的測量單位是有最小距離來衡量的。在每一個單位,發(fā)射器和接收器耦合的一個反饋回路,它會導致發(fā)射器產生超聲脈沖,這是由接收器和接收到一個電脈沖然后被反饋到發(fā)射機轉換,從而使重復系列脈沖的結果。重復率脈沖是成反比關系之間的距離發(fā)射器和接收器。在每一個單位,脈沖提供一個反饋。由于參考的距離是眾所周知的聲速,比例反產出是利用數(shù)學以確定所期望的距離來衡量。由于這兩方面都是相同的影響,溫度和濕度的變化,采取的比例相同,由此產生的測量變得準確。
三、詳細說明
(一)超聲波測距原理  
1.壓電式超聲波發(fā)生器原理
壓電式超聲波發(fā)生器實際上是利用壓電晶體的諧振來工作的。超聲波發(fā)生器內部結構如下所示,它有兩個壓電晶片和一個共振板。當它的兩極外加脈沖信號,其頻率等于壓電晶片的固有振蕩頻率時,壓電晶片將會發(fā)生共振,并帶動共振板振動,便產生超聲波。反之,如果兩電極間未外加電壓,當共振板接收到超聲波時,將壓迫壓電晶片作振動,將機械能轉換為電信號,這時它就成為超聲波接收器了。
測量脈沖到達時間的傳統(tǒng)方法是以擁有固定參數(shù)的接收信號開端為基礎的。這個界限恰恰選于噪音水平之上,然而脈沖到達時間被定義為脈沖信號剛好超過界限的第一時刻。一個物體的脈沖強度很大程度上取決于這個物體的自然屬性尺寸還有它與傳感器的距離。進一步說,從脈沖起始點到剛好超過界限之間的時間段隨著脈沖的強度而改變。結果,一種錯誤便出現(xiàn)了——兩個擁有不同強度的脈沖在不同時間超過界限卻在同一時間到達。強度較強的脈沖會比強度較弱的脈沖超過界限的時間早點,因此我們會認為強度較強的脈沖屬于較近的物體。
2.超聲波測距原理
超聲波發(fā)射器向某一方向發(fā)射超聲波,在發(fā)射時刻的同時開始計時,超聲波在空氣中傳播,途中碰到障礙物就立即返回來,超聲波接收器收到反射波就立即停止計時。超聲波在空氣中的傳播速度為340m/s,根據(jù)計時器記錄的時間t,就可以計算出發(fā)射點距障礙物的距離(s),即:s=340t/2。
(二)超聲波測距系統(tǒng)的電路設計
系統(tǒng)的特點是利用單片機控制超聲波的發(fā)射和對超聲波自發(fā)射至接收往返時間的計時,單片機選用8751,經濟易用,且片內有4K的ROM,便于編程。電路原理圖如圖所示。其中只畫出前方測距電路的接線圖,左側和右側測距電路與前方測距電路相同,故省略之。
1.40kHz脈沖的產生與超聲波發(fā)射
測距系統(tǒng)中的超聲波傳感器采用UCM40的壓電陶瓷傳感器,它的工作電壓是40kHz的脈沖信號,這由單片機執(zhí)行下面程序來產生。
puzel: mov 14h, #12h;       超聲波發(fā)射持續(xù)200ms
here:  cpl p1.0 ;           輸出40kHz方波
             nop ;
             nop ;
             nop ;
             djnz 14h,here;
             ret
前方測距電路的輸入端接單片機P1.0端口,單片機執(zhí)行上面的程序后,在P1.0端口輸出一個40kHz的脈沖信號,經過三極管T放大,驅動超聲波發(fā)射頭UCM40T,發(fā)出40kHz的脈沖超聲波,且持續(xù)發(fā)射200ms。右側和左側測 距電路的輸入端分別接P1.1和P1.2端口,工作原理與前方測距電路相同。
2.超聲波的接收與處理
接收頭采用與發(fā)射頭配對的UCM40R,將超聲波調制脈沖變?yōu)榻蛔冸妷盒盘枺涍\算放大器IC1A和IC1B兩極放大后加至IC2。IC2是帶有鎖 定環(huán)的音頻譯碼集成塊LM567,內部的壓控振蕩器的中心頻率f0=1/1.1R8C3,電容C4決定其鎖定帶寬。調節(jié)R8在發(fā)射的載頻上,則LM567輸入信號大于25mV,輸出端8腳由高電平躍變?yōu)榈碗娖剑鳛橹袛嗾埱笮盘枺椭羻纹瑱C處理。
前方測距電路的輸出端接單片機INT0端口,中斷優(yōu)先級最高,左、右測距電路的輸出通過與門IC3A的輸出接單片機INT1端口,同時單片機P1.3和P1.4接到IC3A的輸入端,中斷源的識別由程序查詢來處理,中斷優(yōu)先級為先右后左。部分源程序如下:
receive1:push psw
              push acc
              clr ex1 ;           關外部中斷1
              jnb p1.1, right ;   P1.1引腳為0,轉至右測距電路中斷服務程序
              jnb p1.2, left ;    P1.2引腳為0,轉至左測距電路中斷服務程序
return:    SETB EX1;           開外部中斷1
              pop acc
              pop psw
              reti
right:     ... ;                    右測距電路中斷服務程序入口
              ajmp return
left:        ... ;                  左測距電路中斷服務程序入口
              ajmp return
3.計算超聲波傳播時間

在啟動發(fā)射電路的同時啟動單片機內部的定時器T0,利用定時器的計數(shù)功能記錄超聲波發(fā)射的時間和收到反射波的時間。當收到超聲波反射波時,接收電路輸出端產生一個負跳變,在INT0或INT1端產生一個中斷請求信號,單片機響應外部中斷請求,執(zhí)行外部中斷服務子程序,讀取時間差,計算距離。其部分源程序如下:

RECEIVE0: PUSH PSW
                      PUSH ACC
                      CLR EX0 ;            關外部中斷0
                      MOV R7, TH0 ;        讀取時間值
                      MOV R6, TL0
                      CLR C
                      MOV A, R6
                      SUBB A, #0BBH;      計算時間差
                      MOV 31H, A ;         存儲結果
                      MOV A, R7
                      SUBB A, #3CH
                      MOV 30H, A
                      SETB EX0 ;           開外部中斷0
                      POP ACC
                      POP PSW
                      RETI
對于一個平坦的目標,距離測量包括兩個階段:粗糙的測量和精細測量。
第一步:脈沖的傳送產生一種簡單的超聲波。
第二步:根據(jù)公式改變回波放大器的獲得量直到回撥被檢測到。
第三步:檢測兩種回波的振幅與過零時間。
第四步:設置回波放大器的所得來規(guī)格輸出,假定是3伏,通過脈沖的周期設置下一個脈沖,根據(jù)第二部的數(shù)據(jù)設定時間窗。
第五步:發(fā)射兩串脈沖產生干擾波,測量過零時間與回波的振幅,如果逆向發(fā)生在回波中,決定要不通過在低氣壓插入振幅。
第六步:通過公式計算距離y。
四、超聲波測距系統(tǒng)的軟件設計
軟件分為兩部分,主程序和中斷服務程序,如圖3(a)(b)(c) 所示。主程序完成初始化工作、各路超聲波發(fā)射和接收順序的控制。
定時中斷服務子程序完成三方向超聲波的輪流發(fā)射,外部中斷服務子程序主要完成時間值的讀取、距離計算、結果的輸出等工作。
系統(tǒng)初始化后就啟動定時器T1從0開始計數(shù),此時主程序進入等待,當?shù)竭_定時時間時T1溢出進入T1中斷服務子程序;在T1中斷服務子程序中將啟動一次新的超聲波發(fā)射,此時將在P1.0引腳上開始產生40kHz的方波,同時開啟定時器T0計時,為了避免直射波的繞射,需要延遲1ms后再開INT0中斷允許;INT0中斷允許打開后,若此時出現(xiàn)低電平則代表收到回波信號,將提出中斷請求進入INT0中斷服務子程序,在INT0中斷服務子程序中將停止定時器T0計時,讀取定時器T0時間值到相應的存儲區(qū),同時設置接收成功標志;主程序一旦檢測到接收成功標志,將調用測溫子程序,采集超聲波測距時的環(huán)境溫度,并換算出準確的聲速,存儲到RAM存儲單元中;單片機再調用距離計算子程序進行計算,計算出傳感器到目標物體之間的距離;此后主程序調用顯示子程序進行顯示;當一次發(fā)射、接收、顯示的過程完成后,系統(tǒng)將延遲100ms重新讓T1置初值,再次啟動T1以溢出,進入下一次測距。如果由于障礙物過遠,超出量程,以致在T0溢出時尚未接收到回波,則顯示“ERROR”重新回到主流程進入新一輪測試。
五、結論
對所要求測量范圍30cm~200cm內的平面物體做了多次測量發(fā)現(xiàn),其最大誤差為0.5cm,且重復性好。可見基于單片機設計的超聲波測距系統(tǒng)具有硬件結構簡單、工作可靠、測量誤差小等特點。因此,它不僅可用于移動機器人,還可用在其它檢測系統(tǒng)中。
思考:至于為什么接收不用晶體管做放大電路呢,因為放大倍數(shù)搞不好,CX20106集成放大電路,還帶自動電平增益控制,放大倍數(shù)為76dB,中心頻率是38k到40k,剛好是超聲波傳感器的諧振頻率 。


原文:
Ultrasonic Distance  Meter
Publication Date:08/15/1995  Primary Examiner: Lobo, Ian J.

Abstract: An ultrasonic distance metercancels out the effects of temperature and humidity variations by including ameasuring unit and a reference unit. In each of the units, a repetitive seriesof pulses is generated, each having a repetition rate directly related to therespective distance between an electroacoustic transmitter and anelectroacoustic receiver. The pulse trains are provided to respective counters,and the ratio of the counter outputs is utilized to determine the distancebeing measured.
Keywords: Ultrasonic; Range finder; Singlechip.
A.BACKGROUND OF THE INVENTION

This invention relates to apparatus for themeasurement of distance and, more particularly, to such apparatus whichtransmits ultrasonic waves between two points. Precision machine tools must becalibrated. In the past, this has been accomplished utilizing mechanicaldevices such as calipers, micrometers, and the like. However, the use of suchdevices does not readily lend itself to automation techniques. It is known thatthe distance between two points can be determined by measuring the propagationtime of a wave travelling between those two points. One such type of wave is anultrasonic, or acoustic, wave. When an ultrasonic wave travels between two points,the distance between the two points can be measured by multiplying the transittime of the wave by the wave velocity in the medium separating the two points.It is therefore an object of the present invention to provide apparatusutilizing ultrasonic waves to accurately measure the distance between twopoints.

When the medium between the two points whose spacingis being measured is air, the sound velocity is dependent upon the temperatureand humidity of the air. It is therefore a further object of the,presentinvention to provide apparatus of the type described which is independent oftemperature and humidity variations.

B.SUMMARY OF THE INVENTION

The foregoing and additional objects are attained inaccordance with the principles of this invention by providing distancemeasuring apparatus which includes a reference unit and a measuring unit. Thereference and measuring units are the same and each includes an electroacoustictransmitter and an electroacoustic receiver. The spacing between the transmitterand the receiver of the reference unit is a fixed reference distance, whereasthe spacing between the transmitter and receiver of the measuring unit is thedistance to be measured. In each of the units, the transmitter and receiver arecoupled by a feedback loop which causes the transmitter to generate an acousticpulse which is received by the receiver and converted into an electrical pulsewhich is then fed back to the transmitter, so that a repetitive series ofpulses results. The repetition rate of the pulses is inversely related to thedistance between the transmitter and the receiver. In each of the units, thepulses are provided to a counter. Since the reference distance is known, theratio of the counter outputs is utilized to determine the desired distance tobe measured. Since both counts are identically influenced by temperature andhumidity variations, by taking the ratio of the counts, the resultantmeasurement becomes insensitive to such variations.

C.DETAILED DESCRIPTION
A.principle of ultrasonic distance measurement
1.the principle of piezoelectric ultrasonic generator

Piezoelectric ultrasonic generator is the use ofpiezoelectric crystal resonators to work. Ultrasonic generator, the internalstructure as shown in Figure 1, it has two piezoelectric chip and a resonanceplate. When it's two plus pulse signal, the frequency equal to the intrinsicpiezoelectric oscillation frequency chip, the chip will happen piezoelectricresonance, and promote the development of plate vibration resonance, ultrasoundis generated. Conversely, if the two are not inter-electrode voltage, when theboard received ultrasonic resonance, it will be for vibration suppression ofpiezoelectric chip, the mechanical energy is converted to electrical signals,then it becomes the ultrasonic receiver.

The traditional way to determine the moment of the echo'sarrival is based on thresholding the received signal with a fixed reference.The threshold is chosen well above the noise level, whereas the moment ofarrival of an echo is defined as the first moment the echo signal surpassesthat threshold. The intensity of an echo reflecting from an object stronglydepends on the object's nature, size and distance from the sensor. Further, thetime interval from the echo's starting point to the moment when it surpassesthe threshold changes with the intensity of the echo. As a consequence, aconsiderable error may occur Even two echoes with different intensitiesarriving exactly at the same time will surpass the threshold at differentmoments. The stronger one will surpass the threshold earlier than the weaker,so it will be considered as belonging to a nearer object.

2.the principle of ultrasonic distance measurement

Ultrasonic transmitter in a direction to launchultrasound, in the moment to launch the beginning of time at the same time, thespread of ultrasound in the air, obstacles on his way to return immediately,the ultrasonic reflected wave received by the receiver immediately stop theclock. Ultrasound in the air as the propagation velocity of 340m / s, accordingto the timer records the time t, we can calculate the distance between thelaunch distance barrier (s), that is: s = 340t / 2

B. Ultrasonic Ranging System for the Second CircuitDesign

System is characterized by single-chip microcomputerto control the use of ultrasonic transmitter and ultrasonic receiver since thelaunch from time to time, single-chip selection of 8751, economic-to-use, andthe chip has 4K of ROM, to facilitate programming. Circuit schematic diagramshown in Figure 2. Draw only the front range of the circuit wiring diagram,left and right in front of Ranging Ranging circuits and the same circuit, it isomitted.

1.40 kHz ultrasonic pulse generated with the launch

Ranging system using the ultrasonic sensor ofpiezoelectric ceramic sensors UCM40, its operating voltage of the pulse signalis 40kHz, which by the single-chip implementation of the following proceduresto generate.

puzel: mov 14h, # 12h; ultrasonic firingcontinued 200ms
here: cpl p1.0; output 40kHz square wave
              nop;
              nop;
              nop;
              djnz 14h, here;
              ret

Ranging in front of single-chip termination circuitP1.0 input port, single chip implementation of the above procedure, the P1.0port in a 40kHz pulse output signal, after amplification transistor T, thedrive to launch the first ultrasonic UCM40T, issued 40kHz ultrasonic pulse, andthe continued launch of 200ms. Ranging the right and the left side of thecircuit, respectively, then input port P1.1 and P1.2, the working principle andcircuit in front of the same location.

2.reception and processing of ultrasonic

Used to receive the first launch of the first pairUCM40R, the ultrasonic pulse modulation signal into an alternating voltage, theop-amp amplification IC1A and after polarization IC1B to IC2. IC2 is lockedloop with audio decoder chip LM567, internal voltage-controlled oscillatorcenter frequency of f0 = 1/1.1R8C3, capacitor C4 determine their targetbandwidth. R8-conditioning in the launch of the carrier frequency on the LM567input signal is greater than 25mV, the output from the high jump 8 feet into alow-level, as interrupt request signals to the single-chip processing.

Ranging in front of single-chip termination circuitoutput port INT0 interrupt the highest priority, right or left location of theoutput circuit with output gate IC3A access INT1 port single-chip, whilesingle-chip P1.3 and P1. 4 received input IC3A, interrupted by the process toidentify the source of inquiry to deal with, interrupt priority level for thefirst left right after. Part of the source code is as follows:

receive1: push psw
                  push acc
                  clr ex1; related externalinterrupt 1
                  jnb p1.1, right; P1.1 pin to0, ranging from right to interrupt service routine circuit
                  jnb p1.2, left; P1.2 pin to0, to the left ranging circuit interrupt service routine
return: SETB EX1; open external interrupt 1
                  pop  acc
                  pop  psw
                  reti
right: ...?; right location entrancecircuit interrupt service routine
                  Ajmp  Return
left: ...; left Ranging entrance circuitinterrupt service routine
                    Ajmp  Return
3. the calculation of ultrasonic propagation time

When you start firing at the same time start thesingle-chip circuitry within the timer T0, the use of timer counting functionrecords the time and the launch of ultrasonic reflected wave received time.When you receive the ultrasonic reflected wave, the receiver circuit outputs anegative jump in the end of INT0 or INT1 interrupt request generates a signal,single-chip microcomputer in response to external interrupt request, theimplementation of the external interrupt service subroutine, read the timedifference, calculating the distance . Some of its source code is as follows:

RECEIVE0:   PUSH PSW
                       PUSH ACC
                       CLR EX0; relatedexternal interrupt 0
                       MOV R7, TH0; read thetime value
                       MOV R6, TL0  
                       CLR C
                       MOV A, R6
                       SUBB A, # 0BBH; calculate the time difference
                       MOV 31H, A; storageresults
                       MOV A, R7
                       SUBB A, # 3CH
                       MOV 30H, A  
                       SETB EX0; open externalinterrupt 0
                       POP ACC  
                       POP PSW
                       RETI

For a flattarget, a distance measurement consists of two phases: a coarse measurementand. a fine measurement:

Step 1:Transmission of one pulse train to produce a simple ultrasonic wave.

Step 2:Changing the gain of both echo amplifiers according to equation , until theecho is detected.

Step 3:Detection of the amplitudes and zero-crossing times of both echoes.

Step 4:Setting the gains of both echo amplifiers to normalize the output at, say 3volts. Setting the period of the next pulses according to the : period ofechoes. Setting the time window according to the data of step 2.

Step 5:Sending two pulse trains to produce an interfered wave. Testing thezero-crossing times and amplitudes of the echoes. If phase inversion occurs inthe echo, determine to otherwise calculate to by interpolation using theamplitudes near the trough. Derive t sub m1 and t sub m2 .

Step 6:Calculation of the distance y using equation .

D. Fourth, the ultrasonicranging system software design

Software is divided into two parts, the main programand interrupt service routine, shown in Figure 3 (a) (b) (c) below. Completionof the work of the main program is initialized, each sequence of ultrasonictransmitting and receiving control.

Interrupt service routines from time to time tocomplete three of the rotation direction of ultrasonic launch, the mainexternal interrupt service subroutine to read the value of completion time,distance calculation, the results of the output and so on..

System initialization after the start timer T1 startscounting from 0 to enter the main program to wait for the T1 overflow into theT1 interrupt service routine when the time is reached; T1 interrupt serviceroutine will start a new ultrasonic transmitting, the square wave will begenerated in the P1.0 pin at the same time open the timer T0 timing, in orderto avoid the diffraction of the direct wave, the delay 1ms and then, after theINT0 interrupt Enable; the INT0 interrupt to allow open, if thisoccurs when thelow is representative of the received echo signal, the interrupt request toINT0 interrupt service routine, the INT0 interrupt service routine will stopthe timer T0 timing, read the time value of T0 timer to the appropriate storagearea.set to receive a sign of success; main program detects reception hallmarksof success, the temperature subroutine is called, collecting the ambienttemperature when the ultrasonic ranging, and converted the accurate speed ofsound stored in RAM storage unit; SCM calls the distance calculationsubroutineto calculate, calculate the distance between the sensor to the target object;since the main program calls the display subroutine to display; aftercompletion of the first launch, receive, display, the system will delay 100msre-T1 set initial value againstart T1 to overflow into the next ranging. If theobstacle is too far beyond the range that T0 overflow has not yet received echo"ERROR" is displayed back to the main flow into a new round of tests.

E. CONCLUSIONS

Required measuring range of 30cm ~ 200cm objectsinside the plane to do a number of measurements found that the maximum error is0.5cm, and good reproducibility. Single-chip design can be seen on theultrasonic ranging system has a hardware structure is simple, reliable, smallfeatures such as measurement error. Therefore, it can be used not only formobile robot can be used in other detection systems.

Thoughts: As for why the receiver do not have thetransistor amplifier circuit, because the magnification well, CX20106integrated amplifier, but also with automatic gain control level, magnificationto 76dB, the center frequency is 38k to 40k, is exactly resonant ultrasonicsensors frequency.



完整的Word格式文檔51黑下載地址:
超聲波測距儀.doc (69.5 KB, 下載次數(shù): 45)







歡迎光臨 (http://www.zg4o1577.cn/bbs/) Powered by Discuz! X3.1
主站蜘蛛池模板: 色毛片| 国产欧美精品一区二区三区 | 国产精品一区二区三区在线 | 国产精品久久久久久妇女6080 | 亚洲国产aⅴ成人精品无吗 国产精品永久在线观看 | 精品国产91| 欧美h版 | 农村真人裸体丰满少妇毛片 | 亚洲一区在线观看视频 | 在线国产一区二区 | 精品国产一区二区国模嫣然 | 国产激情精品一区二区三区 | 在线免费观看欧美 | 伊人网综合在线 | 日本黄色免费片 | 国产激情精品视频 | 欧美另类日韩 | 国产精品a免费一区久久电影 | 一区二区精品视频 | 99re在线视频观看 | 一区二区三区av夏目彩春 | 久久久久久久国产 | 亚洲精品国产电影 | 日本久久视频 | 久久精品日产第一区二区三区 | 亚洲国产aⅴ精品一区二区 免费观看av | 成人h视频在线观看 | 天天天操操操 | 欧美精品成人一区二区三区四区 | 欧美一区二区三区精品免费 | 亚洲在线一区二区 | 欧美激情一区二区三区 | 欧美成人精品一区二区男人看 | 黄色一级电影免费观看 | 国产三级精品三级在线观看四季网 | 成人精品网 | 性做久久久久久免费观看欧美 | 一区二区三区在线播放 | 欧美黄色片 | 国产美女网站 | 国产精品第2页 |