熱門: 51單片機(jī) | 24小時(shí)必答區(qū) | 單片機(jī)教程 | 單片機(jī)DIY制作 | STM32 | Cortex M3 | 模數(shù)電子 | 電子DIY制作 | 音響/功放 | 拆機(jī)樂園 | Arduino | 嵌入式OS | 程序設(shè)計(jì)
![]() |
發(fā)布時(shí)間: 2017-4-23 16:20
正文摘要:對于現(xiàn)在流行的深度學(xué)習(xí),保持學(xué)習(xí)精神是必要的——程序員尤其是架構(gòu)師永遠(yuǎn)都要對核心技術(shù)和關(guān)鍵算法保持關(guān)注和敏感,必要時(shí)要動手寫一寫掌握下來,先不用關(guān)心什么時(shí)候用到——用不用是管理問題,會不會寫是技術(shù)問題 ... |
求指導(dǎo),我用你的代碼運(yùn)行一個(gè)不一樣的東西,結(jié)果很失望![]() import java.util.Random; public class BpDeep{ public double[][] layer;//神經(jīng)網(wǎng)絡(luò)各層節(jié)點(diǎn) public double[][] layerErr;//神經(jīng)網(wǎng)絡(luò)各節(jié)點(diǎn)誤差 public double[][][] layer_weight;//各層節(jié)點(diǎn)權(quán)重 public double[][][] layer_weight_delta;//各層節(jié)點(diǎn)權(quán)重動量 public double mobp;//動量系數(shù) public double rate;//學(xué)習(xí)系數(shù) public BpDeep(int[] layernum, double rate, double mobp){ this.mobp = mobp; this.rate = rate; layer = new double[layernum.length][]; layerErr = new double[layernum.length][]; layer_weight = new double[layernum.length][][]; layer_weight_delta = new double[layernum.length][][]; Random random = new Random(); for(int l=0;l<layernum.length;l++){ layer[l]=new double[layernum[l]]; layerErr[l]=new double[layernum[l]]; if(l+1<layernum.length){ layer_weight[l]=new double[layernum[l]+1][layernum[l+1]]; layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]]; for(int j=0;j<layernum[l]+1;j++) for(int i=0;i<layernum[l+1];i++) layer_weight[l][j][i]=random.nextDouble();//隨機(jī)初始化權(quán)重 } } } //逐層向前計(jì)算輸出 public double[] computeOut(double[] in){ for(int l=1;l<layer.length;l++){ for(int j=0;j<layer[l].length;j++){ double z=layer_weight[l-1][layer[l-1].length][j]; for(int i=0;i<layer[l-1].length;i++){ layer[l-1][i]=l==1?in[i]:layer[l-1][i]; z+=layer_weight[l-1][i][j]*layer[l-1][i]; } layer[l][j]=1/(1+Math.exp(-z)); } } return layer[layer.length-1]; } //逐層反向計(jì)算誤差并修改權(quán)重 public void updateWeight(double[] tar){ int l=layer.length-1; for(int j=0;j<layerErr[l].length;j++) layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]); while(l-->0){ for(int j=0;j<layerErr[l].length;j++){ double z = 0.0; for(int i=0;i<layerErr[l+1].length;i++){ z=z+l>0?layerErr[l+1][i]*layer_weight[l][j][i]:0; layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隱含層動量調(diào)整 layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隱含層權(quán)重調(diào)整 if(j==layerErr[l].length-1){ layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距動量調(diào)整 layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距權(quán)重調(diào)整 } } layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//記錄誤差 } } } public void train(double[] in, double[] tar){ double[] out = computeOut(in); updateWeight(tar); } } import java.util.Arrays; public class MyBPtest1{ public static void main(String[] args){ //初始化神經(jīng)網(wǎng)絡(luò)的基本配置 //第一個(gè)參數(shù)是一個(gè)整型數(shù)組,表示神經(jīng)網(wǎng)絡(luò)的層數(shù)和每層節(jié)點(diǎn)數(shù),比如{3,10,10,10,10,2}表示輸入層是3個(gè)節(jié)點(diǎn),輸出層是2個(gè)節(jié)點(diǎn),中間有4層隱含層,每層10個(gè)節(jié)點(diǎn) /////////第二個(gè)參數(shù)是學(xué)習(xí)步長(過小會使收斂速度太慢;過大則會使預(yù)測不準(zhǔn),跳過一些細(xì)節(jié)), /////////第三個(gè)參數(shù)是動量系數(shù)(使波動小的預(yù)測重新振蕩起來) BpDeep bp = new BpDeep(new int[]{5,5,1}, 0.15, 0.9); ////////對于輸入樣本如果只有一個(gè)數(shù)。沒關(guān)系,大不了{(lán),}第二項(xiàng)里的data和target全為0,,,,!!!!這理解是錯(cuò)誤 ////////因?yàn)槲覀冊O(shè)定了輸入層為2,才會有兩個(gè)輸入({,},{,}}這樣的東西;同理輸入層也為如此 ////////所以說如果是5個(gè)輸入,一個(gè)輸出對于data就{{,,,,},{,,,,}。。。。。。};;;;;對于target{,,,,} double[][] data = new double[][]{{192,195,194,193,193}, {195,194,193,193,195},{194,193,193,195,201}, {193,193,195,201,205},{193,195,201,205,205}, {195,201,205,205,203},{201,205,205,203,203}, {205,205,203,203,202},{205,203,203,202,206}, {203,203,202,206,204},{203,202,206,204,204}, {202,206,204,204,203},{206,204,204,203,199}, {204,204,203,199,195},{204,203,199,195,182}, {203,199,195,182,179},{199,195,182,179,178}, {195,182,179,178,176},{182,179,178,176,175}, {179,178,176,175,173},{178,176,175,173,175}, {176,175,173,175,182},{175,173,175,182,183}, {173,175,182,183,185},{175,182,183,185,179}}; //設(shè)置目標(biāo)數(shù)據(jù),對應(yīng)4個(gè)坐標(biāo)數(shù)據(jù)的分類 double[][] target = new double[][]{{195},{201},{205},{205},{203}, {203},{202},{206},{204},{204},{203},{199},{195},{182},{179}, {178},{176},{175},{173},{175},{182},{183},{185},{179},{182}}; //迭代訓(xùn)練5000次 ///////這里我們沒有設(shè)置訓(xùn)練到了某一精確度自動停止,而是實(shí)打?qū)嵉挠?xùn)練這些次數(shù) for(int n=0;n<5000;n++) for(int i=0;i<data.length;i++) bp.train(data[i], target[i]); //根據(jù)訓(xùn)練結(jié)果來檢驗(yàn)樣本數(shù)據(jù) for(int j=0;j<data.length;j++){ double[] result = bp.computeOut(data[j]); System.out.println(Arrays.toString(data[j])+":"+Arrays.toString(result)); } //根據(jù)訓(xùn)練結(jié)果來預(yù)測一條新數(shù)據(jù)的分類 double[] x = new double[]{192,195,194,193,193}; double[] result = bp.computeOut(x); System.out.println(Arrays.toString(x)+":"+Arrays.toString(result)); } } |
Powered by 單片機(jī)教程網(wǎng)