有輸出總會有輸入,今天測試一下按鍵的功能,第一節已經說過了與GPIO端口相關的寄存器,這里不在重復,想要從端口讀取數據,首先把FIODIR這個寄存器設置為輸入,再從 FIOPIN寄存器讀取數據就可以了,這個寄存器具有讀寫功能。下面說一下這個實驗的電路圖,如下所示:
圖1-1 Joystick按鍵連線圖 這次實驗沒有涉及到外部中斷,都是做普通的IO輸入使用的,所以在這里外部中斷就做學習總結了。下面給出這次實驗的主程序: /********************************************************************************* 文件名稱:mian.c 功 能: 主要調度函數及應用函數 編譯環境: MDKV4.12 時 鐘: 外部12Mhz 日 期: 11/08/16 作 者: 懶貓愛飛 備 注:NULL --------------------------------------------------------------------------------- 修改內容:NULL 修改日期:XXXX年xx月xx日 xx時xx分 修改人員:xxx xxx xxx **********************************************************************************/ #include"main.h" volatile unsigned long SysTickCnt; /* 用于系統時鐘計數 */ /******************************************************************************** * 函數名稱 :void SysTick_Handler (void) * 函數功能 : 系統節拍定時器中斷函數,每1ms計數一次 * 入口參數 : 無 * 出口參數 : 無 * 備 注 :無 *******************************************************************************/ void SysTick_Handler (void) { SysTickCnt++; } /******************************************************************************** * 函數名稱 :void Delay (unsigned long tick) * 函數功能 : 毫秒級延時函數 * 入口參數 : unsigned long tick -- 延時時長 * 出口參數 : 無 * 備 注 :無 *******************************************************************************/ void DelayMs (unsigned long tick) { unsigned long systickcnt; systickcnt = SysTickCnt; while ((SysTickCnt - systickcnt) < tick); } /******************************************************************************** * 函數名稱 :void PortInit(void) * 函數功能 : 端口初始化 * 入口參數 : 無 * 出口參數 : 無 * 備 注 :無 *******************************************************************************/ void PortInit(void) { GPIO1->FIODIR = 0xB0000000; /* LEDs on PORT1 defined as Output */ GPIO2->FIODIR = 0x0000007C; /* LEDs on PORT2 defined as Output */ LedAllOff(); /* 初始化時熄滅所有的燈 */ } /******************************************************************************** * 函數名稱 :int main(void) * 函數功能 : 主函數 * 入口參數 : 無 * 出口參數 : 無 * 備 注 :無 *******************************************************************************/ int main(void) { unsigned char LedFlag = 1; // 記錄LED狀態 SystemInit(); /* 系統初始化,函數在system_LPC17xx.c文件夾中定義 */ SysTick_Config(SystemFrequency/1000 - 1); /* 配置時鐘中斷,每1ms中斷一次 */ /* 在core_cm3.h中定義*/ PortInit(); /* 端口初始化 */ while(1) { if(!LedFlag) { Led1On(); // 點亮LED } else { Led1Off(); // 熄滅LED } if(!KEY_VAL) { DelayMs(10); while(!KEY_VAL); LedFlag ^=1; // Led狀態改變一次 } if(!KEY_EN) // 此處是為了測試搖桿按鍵的功能是否正常 { DelayMs(10); while(!KEY_EN); Led8Neg(); // 點亮LED // Led狀態改變一次 } } }
上一節對程序沒有做過多的解釋,這里詳細分析一下,工程中包含的源文件如下圖所示:
工程中startup_LPC17XX.s是M3的啟動文件,啟動文件由匯編語言寫的,它的作用一般是下面這幾個: 1)堆和棧的初始化 2)向量表定義 3)地址重映射及中斷向量表的轉移 4)設置系統時鐘頻率 5)中斷寄存器的初始化 6)進入C應用程序 工程中main.c是我寫的應用程序,也就是這次實驗的程序,core_cm3.c與core_cm3.h主要是M3外圍驅動源代碼與頭文件,使用時一般不需要修改,直接調用就可以。system_LPC17xx.c與system_LPC17xx.h是關于系統的文件,里面主要提供了系統初始化函數SystemInit(),文件中默認情況下定義的晶振的大小為12M,使用的是外部晶振,還使用了PLL0倍頻,關于倍頻的問題,以后慢慢再總結。芯片LPC1768的初始化主要包括時鐘配置,電源管理,功耗管理等。相比較而言,時鐘配置相對復雜,因為它包括兩個PLL倍頻電路,一個是主PLL0主要是為系統和USB提供時鐘,另一個是PLL1專門 為USB提供48M時鐘,但也可以不使用它們。由于時鐘配置比較靈活,所以相以設置這些參數也比較復雜,但是這些在系統文件中已有明確的定義,所以想要變動時只需修改系統文件中相應的宏或函數即可。 下面簡要總結一下main()函數,首先是系統初始化函數SystemInit(),上面說過它在system_LPC17xx.c這個源文件中,這個函數主要完成了對時鐘的配置,系統功耗PCONP,時鐘輸出,flash加速等系統資源配置。如果要進行修改可以參考源文件的修改方法,雖然是英文注釋,但都非常簡單,有興趣的可以打開看看,不過一般情況下我們拿來直接用就好了不用修改的。 函數 SysTick_Config(SystemFrequency/1000 - 1) 是用來配置系統時鐘節拍的,它的原型在core_m3.c這個源文件中。實驗程序中用的延時函數都是硬件延時,其實就是系統節拍定時器所產生的。使用硬件延時的原因是1、不占用軟件系統資源,2、比較精確。系統定時器配置很簡單,使用也很方便,專為系統軟件或系統管理軟件提供間隔中斷。系統節拍定時器的時鐘源可以是內核時鐘也,可以是外部時鐘,外部時鐘P3.26腳引入,當然想從這個引腳輸入時鐘,需要將這個引腳先配置成STCLK功能。系統節拍定時器是一個24位定時器,當計數值達到0時產生中斷。系統節拍定時器的功能就是為下一次中斷提供前提供一個固定時間間隔。由于節拍定時器是24位的,所以使用時不能與其它定時器混為一談,一定要注意定時時長的限制,不能超過界限。 最后再說一下數據類型的問題,在8位機中數據位找一般就是8位的所以,定義變量時一般選用單字節處理速度會快些,但到了32位機中,數據位寬一般是32位的,所以定義變量時一般用4字節會好些。在core_cm3.c中有關于數據類型的定義,有興趣的可以打開看看。
完整程序源代碼工程文件下載地址:
7009541134820.rar
(141.72 KB, 下載次數: 56)
2015-5-27 19:10 上傳
點擊文件名下載附件
|